##plugins.themes.huaf_theme.article.main##

Tóm tắt

Nghiên cứu được thực hiện nhằm mục tiêu xác định ẩm độ phù hợp cho sản xuất chế phẩm sinh học chứa vi khuẩn quang dưỡng không lưu huỳnh màu tía hòa tan lân. Thí nghiệm hai nhân tố được bố trí khối hoàn toàn ngẫu nhiên với ba lặp lại. Trong đó, nhân tố (A) gồm 5 mức ẩm độ (30, 40, 50, 60 và 70%) và nhân tố (B) là các dòng vi khuẩn quang dưỡng không lưu huỳnh màu tía hòa tan lân (W42, W48, W25, hỗn hợp ba dòng W42, W48 và W25) ở tỷ lệ rơm: lá khóm: tro trấu là 1: 3: 1. Hàm lượng C tổng số giữa các ẩm độ tương đương nhau, dao động 56,3-58,2%. Hàm lượng P tổng số ở các ẩm độ và các dòng vi khuẩn đạt tương đương nhau, dao động 0,335-0,360%. Bên cạnh đó, hàm lượng N tổng số ở nghiệm thức có bổ sung dòng đơn W42 và hỗn hợp 3 dòng W42, W48, W25 cao hơn các nghiệm thức còn lại, lần lượt là 1,29 và 1,30%. Tỷ lệ C/N ở ẩm độ 30, 40, 60, 70% phù hợp cho sản xuất chế phẩm sinh học lần lượt đạt 48,8; 49,0; 50,0; 46,7. Trong khi đó, dòng đơn vi khuẩn W42 và hỗn hợp ba dòng W42, W48, W25 đạt tỷ lệ C/N (41,0 và 46,3) thấp hơn hai dòng đơn vi khuẩn W48 và W25 (56,1 và 57,4). Tuy nhiên, ẩm độ 40 và 60% chế phẩm sinh học có mật số vi khuẩn tốt nhất (0,460 x 106 CFU/g), dòng vi khuẩn W48 và hỗn hợp ba dòng W42, W48, W25 đạt mật số cao nhất (0,455 x 106 CFU/g).

##plugins.themes.huaf_theme.article.details##

Cách trích dẫn
Trần Trọng Khôi Nguyên, Lý Ngọc Thanh Xuân, Trần Chí Nhân, Nguyễn Thanh Phương, Lê Thị Mỹ Thu, Nguyễn Đức Trọng, & Nguyễn Quốc Khương. (2024). Nghiên cứu xác định ẩm độ phù hợp cho sản xuất chế phẩm sinh học chứa vi khuẩn quang dưỡng không lưu huỳnh màu tía hòa tan lân. Tạp Chí Khoa học Và công nghệ nông nghiệp Trường Đại học Nông Lâm Huế, 8(3), 4360–4370. https://doi.org/10.46826/huaf-jasat.v8n3y2024.1158
Chuyên mục
CÂY TRỒNG - THỰC VẬT

Tài liệu tham khảo

Nguyễn Khởi Nghĩa và Nguyễn Thị Kiều Oanh. (2017). Tuyển chọn chất mang và chất nền sản xuất chế phẩm vi sinh chứa ba dòng vi khuẩn chịu mặn kích thích sinh trưởng cây trồng (Burkholderia cepacia BL1-10, Bacillus megaterium ST2-9 và Bacillus aquimaris KG6-3). Tạp chí Công nghệ Sinh học Đại học Cần Thơ, 15(2), 381-392.
Nguyễn Thị Thu Thủy và Nguyễn Tiến Long. (2018). Vi sinh vật phân giải cellulose mạnh trong sản xuất phân hữu cơ từ phế phụ phẩm nông nghiệp và ảnh hưởng của chúng đối với giống Lạc L14 tại Hương Trà, Thừa Thiên Huế. Hue University Journal of Science: Agriculture and Rural Development, 127(3B), 5-19.
Nguyễn Văn Thao, Nguyễn Thị Lan Anh, Nguyễn Thị Minh, Nguyễn Thu Hà và Đỗ Nguyên Hải. (2015). Nghiên cứu chế phẩm vi sinh vật để sản xuất phân hữu cơ sinh học từ bã nấm và phân gà. Tạp chí khoa học và phát triển, 13(8), 1415-1423.
Tiêu chuẩn Việt Nam. TCVN 6642: 2000. Chất lượng đất - xác định hàm lượng cacbon hữu cơ và cacbon tổng sô sau khi đốt khô (phàn tích nguyên tố).
Trần Thị Anh Thư, Trần Thị Ngọc Sơn, Nguyễn Ngọc Nam và Lưu Hồng Mẫn. (2011). Ảnh hưởng của rơm rạ xử lý bằng Trichoderma spp. Đến năng suất, độ phì nhiêu đất và hiệu quả kinh tế lúa hè thu 2010 tại Đồng bằng Sông Cửu Long. Tạp chí Nông nghiệp và Phát triển Nông thôn, 7, 37-44.
Trần Thị Lệ, Trần Thị Thu Hà, Nguyễn Thị Thanh và Nguyễn Xuân Kỳ. (2012). Tuyển chọn chủng nấm Trichoderma spp. phân giải cellulose mạnh để sản xuất phân hữu cơ vi sinh và nghiên cứu ảnh hưởng của chúng đối với giống đậu xanh 208 vụ Xuân 2011 tại HTX Hương Long, thành phố Huế. Tạp chí Khoa học Đại học Huế, 71(2), 203–214.
Akratos, C. S., Tekerlekopoulou, A. G., Vasiliadou, I. A., & Vayenas, D. V. (2017). Cocomposting of olive mill waste for the production of soil amendments. In Olive Mill Waste (pp. 161-182). Academic press.
Andreolli, M., Zapparoli, G., Angelini, E., Lucchetta, G., Lampis, S., & Vallini, G. (2019). Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological Research, 219, 123-131.
Batool, K., & Rehman, Y. (2017). Arsenic-redox transformation and plant growth promotion by purple nonsulfur bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. BioMed Research International, 2017.
Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11-18.
Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916.
Bishop, P. L., & Godfrey, C. (1983). Nitrogen transformations during sludge composting. Biocycle, 24(5), 34-39.
Cook, A. M., Daughton, C. G., & Alexander, M. (1978). Determination of phosphorus-containing compounds by spectrophotometry. Analytical Chemistry, 50(12), 1716-1717.
Cronje, A. L., Turner, C., Williams, A. G., Barker, A. J., & Guy, S. (2004). The respiration rate of composting pig manure. Compost Science and Utilization., 12(2), 119-129.
Chojnacka, K., Skrzypczak, D., Szopa, D., Izydorczyk, G., Moustakas, K., & Witek-Krowiak, A. (2023). Management of biological sewage sludge: Fertilizer nitrogen recovery as the solution to fertilizer crisis. Journal of Environmental Management, 326, 116602.
Faria, D. R., Sakita, K. M., Capoci, I. R. G., Arita, G. S., Rodrigues-Vendramini, F. A. V., de Oliveira Junior, A. G., Felipe, M. S. S., de Mendonca, P. S. B., Svidzinski, T. I. E., & Kioshima, E. Svà cs. (2020). Promising antifungal activity of new oxadiazole against Candida krusei. Plos One, 15(1), e0227876.
Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., & Pandey, A. (2006). Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technology & Biotechnology, 44(2).
Haug, R. (2018). The practical handbook of compost engineering. Routledge.
Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste management, 24(8), 805-813.
Huu, T. N., Giau, T. T. N., Ngan, P. N., Van T. T. B., & Khuong, N. Q. (2022). Potential of phosphorus solubilizing purple nonsulfur bacteria isolated from acid sulfate soil in improving soil property, nutrient uptake, and yield of pineapple (Ananas comosus L. Merrill) under acidic stress. Applied and Environmental Soil Science, (1), 8693479.
Harada, N., Nishiyama, M. & Matsumoto, S. (2001). Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiology Ecology, 35, 231-238.
Kantachote, D., Nunkaew, T., Kantha, T., & Chaiprapat, S. (2016). Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology, 100, 154-161.
Iqbal, M. K., Nadeem, A., Sherazi, F., & Khan, R. A. (2015). Optimization of process parameters for kitchen waste composting by response surface methodology. International Journal of Environmental Science and Technology, 12, 1759-1768.
Jiaying, M., Tingting, C., Jie, L., Weimeng, F., Baohua, F., Guangyan, L., Hubo, L., Juncai, L., Zhihai, W., Longxing, T., & Guanfu, F. (2022). Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Science, 29(2), 166-178.
Joshi, S. K., & Gauraha, A. K. (2022). Global biofertilizer market: Emerging trends and opportunities. Trends of Applied Microbiology for Sustainable Economy, 689-697.
Kantha, T., Kantachote, D., & Klongdee, N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of Microbiology, 65, 2109-2118.
Kirk, P. L. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354-358.
Khuong, N. Q., Huu, T. N., Nhan, T. C., Tran, H. N., Tien, P. D., Xuan, L. N. T., & Kantachote, D. (2021). Two strains of Luteovulum sphaeroides (purple nonsulfur bacteria) promote rice cultivation in saline soils by increasing available phosphorus. Rhizosphere, 20, 100456.
Khuong, N. Q., Sakpirom, J., Oanh, T. O., Thuc, L. V., Thu, L. T. M., Xuan, D. T., Quang, L. T., & Xuan, L. N. T. (2023). Isolation and characterization of novel potassium-solubilizing purple nonsulfur bacteria from acidic paddy soils using culture-dependent and culture-independent techniques. Brazilian Journal of Microbiology, 54(3), 2333-2348.
Meena, A. L., Karwal, M., Dutta, D., & Mishra, R. P. (2021). Composting: phases and factors responsible for efficient and improved composting. Agriculture and Food: e-Newsletter, 1, 85-90.
Mia, M. B., & Shamsuddin, Z. H. (2010). Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African Journal of Biotechnology, 9(37), 6001-6009.
Misra, R. V., Roy, R. N., & Hiraoka, H. (2003). On-farm composting methods. Rome, Italy: UN-FAO.
Nunkaew, T., Kantachote, D., Kanzaki, H., Nitoda, T., & Ritchie, R. J. (2014). Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electronic Journal of Biotechnology, 17(1), 19-26.
Oudart, D., Paul, E., Robin, P., & Paillat, J. M. (2012). Modeling organic matter stabilization during windrow composting of livestock effluents. Environmental technology, 33(19), 2235-2243.
Penuelas, J., Coello, F., & Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security, 12(1), 5.
Richard, T. L., Hamelers, H. V. M., Veeken, A., & Silva, T. (2002). Moisture relationships in composting processes. Compost Science & Utilization, 10(4), 286.
Sasaki, K., Watanabe, M., Suda, Y., Ishizuka, A., & Noparatnaraporn, N. (2005). Applications of photosynthetic bacteria for medical fields. Journal of Bioscience and Bioengineering, 100(5), 481-488.
Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). a-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol, 44(2), 173-184.
Wong, W. T., Tseng, C. H., Hsu, S. H., Lur, H. S., Mo, C. W., Huang, C. N., Hsu, S. C., Lee, K. T., & Liu, C. T. (2014). Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes and Environments, 29(3), 303-313.
Yang, H., Zhang, H., Qiu, H., Anning, D. K., Li, M., Wang, Y., & Zhang, C. (2021). Effects of C/N Ratio on lignocellulose degradation and enzyme activities in aerobic composting. Horticulturae, 7(11), 482.
Zhang, S., Zhong, B., An, X., Han, Y., Xiao, X., & Zhang, Q. (2023). Effect of moisture content on the evolution of bacterial communities and organic matter degradation during bioaugmented biogas residues composting. World Journal of Microbiology and Biotechnology, 39(1), 1.